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Motivation
Next-Generation EO Modulators

• LiNbO3 EO modulators with 10Gbit/sec data transfer rates are being 
used in current optical communication systems.

• Communication industries have identified 40 Gbit/sec as the 
requirement for next-generation EO modulators with below 5 volt
to be compatible with integrated RF driving circuits.

•RF Photonics applications require switching voltage below 1 V.

• Current EO modulators are based on bulk-grown LiNbO3 crystals 
and have reached close to their performance limits.

Novel approaches are required to realize the next-generation 
of EO modulators with bandwidths of 40 GHz and above.
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Our Approach
Materials

Organic: Self-Assembled Superlattices

Novel Device Design
Strongly Confined Thin-Film Waveguide
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Advantages
Materials

Polymer: Self-Assembled Superlattices

Novel Device Design
Strongly Confined Thin-Film Waveguide

Molecular engineering of hyperpolarizability 
-> High EO coefficient (r33 ≥ 100pm/V)
Low dielectric constant -> Higher Bandwidth
No Poling required -> More stable, Simple design
Tunable refractive index (n=1.5~1.75) -> Better Confinement

Higher E-Field strength, better opto-rf field-overlap 
-> Lower switching voltage (< 5V) 

Reduced opto-rf Velocity-mismatch 
-> Higher Bandwidth (> 40GHz)
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Goals of NWU’s R-FLICS Program
Next-Generation SAS EO Modulators

I. Develop growth processes for intrinsically polar organic self-
assembled superlattices (SAS)

• Electric field poling unnecessary
• Very large r33, low �.

II. Develop capability to tune materials properties
• r33, n, �, loss

III. Develop fabrication methodologies to turn SAS materials into 
high-performance EO modulators.

• Lithography, cladding, substrate generality

IV. Fabricate and test self-assembled electro-optic modulators.
• Minimize Vπ, loss
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EO Modulators: Figures of Merit
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Optical Waveguide Structure

Mach-Zehnder
Inteferometer

All-Polymer 
Channel Waveguide

Chromophore
Guiding layer
(n=1.56)

CytopTM (n=1.36)

Top Electrode

Bottom Electrode



Northwestern University
Approved for public release, distribution unlimited

Design Motifs for Molecular/Polymer 
Electro-Optic Materials

Poled Host-Guest Poled and Functionalized

Poled, Functionalized, Cross linked Poled, Cros s linkable Matrix

Chromophoric LB Film
Se lf-Assembled Superlattice  (SAS)

= Chromophore Module
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Condensation
Chemistry

Characteristics

Characterization

Å-Precise Self-Limiting Build-Up of Cross-Linked Multilayers
Robust, Conformal, Smooth, Adherent, Pin Hole-Free
Applicable to Many Molecular Building Blocks

SPM, X-Ray Reflectivity, Standing Wave X-Ray,
Ellipsometry, Optical Spectroscopy, Cyclic Voltammetry,
Advancing Contact Angle, TGA, SHG Response
Electroluminescence

Si OH SiOH

SiClSi OH

SiSi O

SiSi O+

+

Materials Construction via Layer-by-Layer 
Siloxane Self-Assembly
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Electronic Structure Theory in Materials Development

Correction Vector/Sum-Over-States ZINDO Calculations
Attractions
•Target New Molecular Architectures For Synthesis
•Test New Response Mechanisms
•Understand Mechanisms,
Frequency Dependence

Challenges
•Environmnetal Effects
•Metal-Organic Structures
•Open Shell Molecules, Excited States
•Luminescent Electron-Hole Recombination

Ratner, Fragala, Di Bella
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- Environmentally Stable, Adherent Thin Films
- Grown from Designed Building Blocks
- Manufacturable by Automated Dipping Techniques
- Northwestern Patent Coverage

Attraction for E-O Modulators
- Intrinsically Polar

Electric Field Poling Unnecessary
-Large E-O Coefficients Possible � Low Operating Voltages

r33 = 30 - 500 pm/V
- Grown on Range of Substrates

SiO2, GaAs, ITO, Plastics, Spin-on-Glass
- Broad Tunable Transparency Window

What are Self-Assembled Electro-Optic
Materials?
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Programmed Polar Microstructure
Tailored Building Blocks
Compatible with Soft Lithography
n3r/ε = 20-140 pm/V

Rapid. Readily Adaptable to Automation

II. Second Generation (Protection-Deprotection)

I. First Generation

Capping layerChromophoreCoupling layer

Etc.

Etc.

Deprotection Capping layer

_

Protected Chromophore

Robust, Adherent, Smooth, Structurally, Regular Siloxane Networks

STRUCTURES AND MULTILAYER GROWTH BY 
MOLECULAR SELF-ASSEMBLY

Synthetic Scope, Fidelity, Scalability
Tune λ, β, r
Templated Growth, Device Integration
Microstructure, Loss
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First Generation Self-Assembly

Construction of Chromophoric Multilayers
by Molecular Layer Epitaxy

1. Rapid Topotactic Multilayer Growth
2. Intrinsically Acentric (No Poling Required)
3. Very High Structural Regularity
4. Very Large χ(2) Response
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Chromophore
Layer

Coupling Layer

Capping Layer

Molecular Modeling of SAS
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Second Generation: Combining the Deprotection and the Capping Step

Etc.

Deprotection
Capping layer

_

Protected Chromophore

ONLY TWO ASSEMBLY STEPS

Second Harmonic Generation UV-vis
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Computer controlled heating and sonication

Computer controlled taps

N2

Bubbler

Computer controlled taps

Bubbler

N2

Vacuum

Cold trap (liquid N 2)

Glass Reactor

MeOH Toluene
nBu 4NF

in
THF

A = Chromophore in Toluene
B = Octachlorotrisiloxane in Pentane

A B

Stainless steel tubes

Glass reservoir
Plastic tube

Drain

Vent

2nd Generation Self-Assembly: Growth Method

“One Pot Chemistry”
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MODIFIED BIO SLIDE STAINER/DIPPER MODIFIED SOLID PHASE
PEPTIDE SYNTHESIZER

ALLOW PROGRAMMED LAYER-BY-LAYER FABRICATION

Automation Tools for Self-Assembly
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Second Generation (Protection -Deprotection)

Etc.

Deprotection Capping layer

_

Protected Chromophore

Second Generation: Combining the Deprotection and the Capping Step 

Etc.

Deprotection
Capping layer

_

Protected Chromophore

Etc.

Deprotection Capping layer

_

Protected Chromophore Metal Complex

Metal Oxide Layer

Capping layer

‘BIFUNCTIONAL HYBRID STRUCTURE’

SA-Films with High Refractive Index

For First and Second Generation Self--Assembly

ONLY TWO ASSEMBLY STEPS

Development of Growth Process
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First Self-Assembled EO Modulator

Programmed Polar Microstructure
Tailored Building Blocks
Compatible with Soft Lithography
n3r/εεεε = 20-140 pm/V

Synthetic Scope, Scalability
Tune λλλλ, ββββ, r
Templated Growth, Device Integration
Microstructure, Loss

Modulating
Electrodes

CYTOPTM

BCB
SiO2

Si

5 µµµµm

SEM
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SAS

CF CF
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C
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CH3

CH3

Si

CH3

CH3

On

ELECTRO-OPTIC MATERIALS SYNTHESIS BY SELF-ASSEMBLY
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A: CytopTM/CycloteneTM/CytopTM: α = 0.51dB/cm

B: CytopTM/PMMA/CytopTM: α = 0.65dB/cm
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SEM Images of Waveguides
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Current Prototype Modulator

Full Layer
Chromophore (n=1.56)

CytopTM (n=1.36)

Vπ·L ≤ 5 V·cm

Projection (1st Gen)

MZI + Push-Pull

80 Layer (thickness)
Chromophore (n=1.56)

CytopTM (n=1.36)

BCB (CycloteneTM)
(n=1.54)

6µm 1.5µm

R33~ 22 pm/V
Vπ·L = 88 V·cm
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Device Optimization

Goal of Optimization:
1. Lower Switching Voltage

2. Higher Modulation Bandwidth

3. Better Confinement of Light

Index Tuning of SAS

Molecular engineering gives extra degrees of freedom
in varying chromophore layer index of refraction
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Switching Voltage (Vπ)
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Modulation Bandwidth
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How Higher Index Improves the Performance

1. Lower switching voltage
• Vπ ∝ 1/n3r
• Higher n -> Smaller optical mode size 

-> Reduced Electrode separation 
-> Higher E-field strength

2. Fewer active layer needed
by reduced optical mode size
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Optical Mode Calculation
Beam Propagation Method:
Mode size calculation
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Switching Voltage vs. Guiding Layer Index
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RF Simulation I
Quasi-static Finite Element Methods:

Provides C & C0

(1) Velocity mismatch: effective RF index

0C
Cn opteff =−

C: Capacitance with materials present
C0: Capacitance with air

0

1
CCc

Z =

(2) Characteristic impedance:
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RF Simulation II
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RF Bandwidth vs. Guiding Layer Index
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Most Significant Accomplishments
SAS Materials Development

• Highly efficient protection-deprotection growth technique 
demonstrated

• �(2) � 220pm/V, r33 � 80pm/V
• Automated growth apparatus implemented for SAS structures
• Metal oxide layer incorporation demonstrated for index tuning

Device Development
• All polymer waveguides demonstrated with good 

transparencies from 350-1650nm
• CytopTM/CycloteneTM/CytopTM: �=0.5 dB/cm

• First SAS electro-optic modulators fabricated and tested
• Simple design, Vπ-L=88 V-cm
• Route to low Vπ clear: Thicker films,

longer devices, advanced chromophores
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Future Efforts
Y1 Streamline growth techniques

Tune refractive index
All-polymer waveguide
Fabricate first SAS modulator

Y2 Routine automated assembly
Grow, characterize thick active SAS structures
Design, routinely fabricate, characterize modulators

Y3 Incorporate “super-chromophores” in SAS structures 
Automated index tuning
Design, routinely fabricate, characterize modulators

Y4 Implement soft lithography to template SAS growth 
Demonstrate efficiently fabricated SAS modulators with Vπ<1V
Test modulators in various environments
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Conclusions

1. Switching voltage is measured for the first time
from the SAS-organic modulator:

Vπ·L = 88 V·cm for 80 Layer
-> projected to be  Vπ·L ≤ 5 V·cm for 

a device  with fully grown chromophore layer

2. Device optimization simulation performed using
index tuning of SAS:
Higher index gives lower switching voltage
and Fewer SAS layer needed.


